

Blood 142 (2023) 4511-4513

The 65th ASH Annual Meeting Abstracts

POSTER ABSTRACTS

627.AGGRESSIVE LYMPHOMAS: CLINICAL AND EPIDEMIOLOGICAL

Early Identification of Very High Risk Patients with Diffuse Large B Cell Lymphoma (DLBCL) By PET-CT

Almudena Cabero Martínez^{1,2}, Luis Gonzaga Diaz Gonzalez², Carlos Montes², María Cortés-Rodríguez², Norma C. Gutierrez³, Monica Baile Gonzalez⁴, Ana García Bacelar⁴, Miriam Lopez Parra¹, Jose Cristobal Cañadas⁴, Juan Gabriel Villanueva⁴, Francisco Javier Diaz Galvez⁵, María Peñarrubia-Ponce⁶, Silvia Maria Fernandez Ferrero⁷, Jose Antonio Queizan Hernandez, MD⁸, Miguel Cabezudo⁹, Erik De Cabo López¹⁰, Teresa Villaescusa¹¹, Pilar Tamayo⁴, Ramon Garcia-Sanz⁴, Alejandro Martin García-Sancho⁴

¹ Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), Salamanca, Spain

²Hospital de Salamanca, Salamanca, Spain

³Hospital Universitario De Salamanca, Salamanca, ESP

⁴Hospital Universitario de Salamanca, Salamanca, Spain

⁵Hospital Universitario de Burgos, BURGOS, ESP

⁶Hospital ClíNico Universitario De Valladolid, Valladolid, ESP

⁷ Hospital de León, Leon, ESP

⁸Hematology Department - Hospital General de Segovia, Segovia, Spain

⁹Hospital de Ávila, Ávila, Spain

¹⁰Hospital del Bierzo, Ponferrada, Spain

¹¹Hospital de Zamora, Zamora, ESP

TITI F

Early identification of very high risk patients with Diffuse Large B Cell Lymphoma (DLBCL) by PET-CT. INTRODUCTION

Early identification of high risk DLBCL after the start of treatment continues to be a challenge that has not been fully resolved. The main aim of this study was to analyze the prognostic impact on progression free survival (PFS) of some PET-CT parameters at diagnosis (PET0) and after two cycles of first-line treatment (PET2).

METHODS

Patients diagnosed with DLBCL eligible for immunochemotherapy were prospectively included. A PET-CT was done at diagnosis, after two cycles of treatment and at the end of treatment. Metabolic tumoral volume (MTV), total lesion glycolysis (TLG) and maximum standardized uptake value (SUVmax) were the main initial parameters analyzed whereas Deauville score (Dv), the difference between PET0-PET2 SUVmax (deltaSUV) and MTV2 were the parameters analyzed after two cycles. The MTV was defined as the volume of hypermetabolic tissue with a SUV greater than a threshold value of 3 using volume viewer software (Lyfex). All PET/CT studies were performed at the same hospital and with the same equipment and analyzed by 3 Nuclear Medicine experts. The primary endpoint was PFS. RESULTS

153 patients diagnosed with DLBCL from 8 hospitals in Castilla y León were included. All of them received first line treatment with R-CHOP or similar immunochemotherapy regimens. Median age was 64 (24-86) years, and 51% were male; 70% had III-IV Ann-Arbor stage. The revised International Prognostic Index (R-IPI) distribution was low risk (0), 7,2%, intermediate risk (1-2), 51%, and high risk (3-5), 41,8%. Median MTV0 was 478,6 cm ³.

ROC analysis identified as the optimal cut-off points 700 cm³ for MTV0, 6430 cm³ for TLG0, 25 for SUVmax and 1,85 cm³ for MTV2. The cut-off of 66% was used for deltaSUV, as described in previous publications.

Overall response rate (ORR) after treatment was 87,6% (71,2% complete response). With a median follow up of 39 months, estimated PFS at 3 years was 74,8%.

In addition to R-IPI, all PET0 and PET2 parameters analyzed, with the exception of SUVmax at PET0, showed significant influence on PFS, as shown in table 1. In multivariate analysis, MTV0 and deltaSUV maintain independent influence. Based on

POSTER ABSTRACTS

these two factors, 3 groups with different PFS were obtained, as shown in *figures 1* including a high-risk group (MTV0 >700 cm³ and deltaSUV <66%) that comprised 24% of the series, with PFS at 3 years of 30,5%. CONCLUSIONS

The combination of different PET parameters at diagnosis and after two cycles of treatment give us the possibility of identify, independently of IPI, a subgroup of patients with very poor PFS. It could serve as a basis for risk-adapted treatments, although further prospective studies with larger population are required in order to confirm our results.

Disclosures Lopez Parra: Janssen: Honoraria, Speakers Bureau; Novartis: Consultancy; Kite Gilead: Honoraria, Speakers Bureau; Celgene BMS: Consultancy. Garcia-Sanz: Janssen: Consultancy, Honoraria; Takeda: Consultancy, Honoraria. Martin García-Sancho: Roche: Consultancy; Janssen: Honoraria; Takeda: Consultancy; Novartis: Consultancy.

https://doi.org/10.1182/blood-2023-186952

	PFS at 3 years	Univariate	Multivariate*
Clinical parameters at diagnosis			
ECOG (<2 vs ≥2)	80,6% - 38,1%	<0,001	
Stage (I-II vs III-IV)	86,5% - 69,6%	0,04	
R-IPI (0-2 vs 3-5)	80,2% - 54,8%	<0,001	
Bulky disease (<7 vs ≥7 cm)	80,1% - 60,9%	0,017	
PET-CT parameters at diagnosis and after two treatment cycles			
MTV0 (<700 vs ≥700 cm ³)	85,0% - 57,0%	<0,001	0,002 [HR 2,8 (1,5-5,1)]
TLG0 (<6430 vs ≥6430 cm³)	85,0% - 56,3%	<0,001	
Deauville score (PET2) (0-3 vs 4-5)	88,7% - 60,2%	<0,001	
MTV2 (<1,85 vs ≥1,85 cm ³)	89,1% - 58,6%	<0,001	
DELTA SUV (≥66% vs <66%)	89,0% - 58,9%	<0,001	<0,001 [HR 4,6 (2,3-9,9)]

Table 1. Uni and multivariate analysis of prognostic parameters. *TLG was excluded at multivariate analysis because it is a MTVO dependent parameter.

Figure 1. Progression free survival based on MTVO combined with deltaSUV.